
PREPRINT: Accepted at the 7th IEEE International Conference on Smart Computing (SMARTCOMP), 2021PREPRINT: Accepted at the 7th IEEE International Conference on Smart Computing (SMARTCOMP), 2021

OODIn: An Optimised On-Device Inference
Framework for Heterogeneous Mobile Devices

Stylianos I. Venieris†, Ioannis Panopoulos‡, Iakovos S. Venieris‡
†Samsung AI Center, Cambridge, UK, ‡National Technical University of Athens, Athens, Greece

Abstract—Radical progress in the field of deep learning (DL)
has led to unprecedented accuracy in diverse inference tasks.
As such, deploying DL models across mobile platforms is vital
to enable the development and broad availability of the next-
generation intelligent apps. Nevertheless, the wide and optimised
deployment of DL models is currently hindered by the vast system
heterogeneity of mobile devices, the varying computational cost
of different DL models and the variability of performance
needs across DL applications. This paper proposes OODIn, a
framework for the optimised deployment of DL apps across het-
erogeneous mobile devices. OODIn comprises a novel DL-specific
software architecture together with an analytical framework for
modelling DL applications that: (1) counteract the variability
in device resources and DL models by means of a highly
parametrised multi-layer design; and (2) perform a principled
optimisation of both model- and system-level parameters through
a multi-objective formulation, designed for DL inference apps, in
order to adapt the deployment to the user-specified performance
requirements and device capabilities. Quantitative evaluation
shows that the proposed framework consistently outperforms
status-quo designs across heterogeneous devices and delivers
up to 4.3× and 3.5× performance gain over highly optimised
platform- and model-aware designs respectively, while effectively
adapting execution to dynamic changes in resource availability.

I. INTRODUCTION

In recent years, deep learning (DL) models have emerged as
the state-of-the-art in several AI inference tasks. Ranging from
the recognition of objects [1] and emotions [2] to scene [3] and
speech understanding [4], their unrivalled accuracy has made
deep neural networks (DNNs) an enabler of many mobile apps.
Currently, developers who seek state-of-the-art accuracy and
wide device compatibility typically resort to offloading the DL
model execution to a remote server [5]. While this approach
can resolve the problem of supporting devices with different
capabilities, cloud/edge offloading comes with high operating
costs, raises privacy concerns due to the transmission of user
data and leads to inconsistent user experience due to varying
networking conditions when using cellular connectivity.

Driven by recent developments in both the hardware and
algorithmic fronts, on-device execution is becoming a promis-
ing alternative. On the one hand, device vendors have started
enhancing their chipsets with specialised DNN processors,
often called Neural Processing Units (NPUs) [6]. On the
other hand, numerous model compression techniques have
led to significantly more compact DNNs [7], enabling their
deployment on resource-constrained platforms. As a result,
systems that rely only on the local resources of the user device
to execute DNNs are increasingly more competitive.

Despite the progress, mainstream mobile usage of DNNs is
primarily isolated to only a few global-scale companies that
have the human and computational resources to build propri-
etary solutions. This can be attributed to three main factors:

1) the diversity in the processing capabilities of devices in the
wild, leading to wide system heterogeneity and inconsistent
performance across devices; 2) the variety of DL models, in
terms of task, architecture and resource demands; and 3) the
variability of performance requirements in terms of accuracy,
latency, throughput and energy across DNN applications. This
situation is further aggravated by the fluctuation of resource
availability due to the multi-tasking nature of smartphones.

In this work, we propose OODIn, a framework that makes
strides towards overcoming the barriers that hinder the wide
integration of DL in mobile devices. OODIn introduces a
highly customisable mobile software architecture that allows
the manipulation of critical model- and system-level parame-
ters in order to adapt to both the DNN workload and the device
at hand. Moreover, by means of a multi-objective modelling
framework, OODIn closely captures the various performance
demands of DL applications and tailors execution to the given
use-case. The key contributions of this paper are the following:

• A novel software architecture that enables running a
broad range of DL applications across mobile devices
while meeting stringent performance constraints. The
proposed architecture introduces a highly parametrised
multi-layer design that provides the necessary building
blocks for developing smart applications, while carefully
decoupling the application functionality from the selec-
tion of DL model and the specifics of the device re-
sources. Moreover, through its set of tunable parameters,
the developed architecture introduces fine-grain customis-
ability at both the model and system level, aiming to
attain the maximum device capabilities and satisfy the
user-defined performance targets.

• The OODIn automated framework for deploying DL
applications across diverse mobile devices. The devel-
oped framework first takes as input a target DNN in
TensorFlow together with multiple performance objec-
tives. Leveraging our multi-objective optimisation for-
mulation, OODIn traverses the design space across both
model- and system-level parameters and yields a highly
optimised configuration, tailored to the various applica-
tion requirements and the characteristics of the target
device. Upon deployment, OODIn tracks changes in
system resource usage and reconfigures its parameters
accordingly through a run-time adaptation mechanism.

• We implement OODIn on commodity smartphones and
conduct comprehensive experiments to evaluate its effec-
tiveness in deploying diverse DL applications across het-
erogeneous devices, without compromising performance.



Offline Component

𝒎𝒎ref: reference model
𝝄𝝄: performance objectives
𝑴𝑴: model space
𝝈𝝈 = 𝒎𝒎ref, 𝒕𝒕,𝒉𝒉𝒉𝒉 : design
𝒕𝒕: selected transformation
𝒉𝒉𝒉𝒉: selected hardware parameters
𝒔𝒔: device statistics (e.g. CPU
usage, thermal throttling)

Online Component

Application Sensor Input
(e.g. images)

Runtime 
Manager

Transformations

yes

no

Device 
Measurements

User Input
(𝒎𝒎ref,𝒐𝒐)

𝑴𝑴

𝒐𝒐

𝝈𝝈

𝒔𝒔𝝈𝝈
Accuracy 

Evaluation

System 
Tuning

Model 
Selection

System Optimisation

𝒎𝒎ref

Fig. 1. Overview of OODIn’s processing flow.

II. DEEP LEARNING ON MOBILE DEVICES

DL Model Compression. Several techniques have been
proposed for simplifying DNNs [7] in order to match the
capabilities of user devices, such as resource-limited smart-
phones and IoT modules. Methods such as pruning [8], quanti-
sation [9] and early-exit models [10] all aim to reduce the size,
latency and energy consumption of a DNN. Nevertheless, with
the majority of techniques developed as proprietary solutions,
their integration into mobile apps remains challenging and
their adoption in real-world DL apps limited [11]. Moreover,
the attainable computational savings vary significantly across
heterogeneous devices. Thus, there is an emerging need for
algorithmic and system solutions that provide a principled
adaptation of such techniques to diverse devices and DNNs.

DL Backends for Mobile. Several frameworks are gaining
traction for mobile inference. Two prominent and widely
used frameworks are TensorFlow Lite (TFLite)1 and PyTorch
Mobile.2 In addition to converting trained models into a format
suitable for on-device inference, TFLite can also optionally
optimise DNNs with various compression methods, such as
quantisation or weight clustering, while also supporting mul-
tiple processor targets, such as GPUs and NPUs via Android
NNAPI [6]. Nonetheless, both frameworks put emphasis solely
on the efficient execution of DNN inference and do not capture
critical application-level needs, such as multiple -and often
competing- performance objectives. Moreover, most optimisa-
tions are targeted only towards flagship devices, leaving the
rest of the device landscape with limited to no support [12].

Challenges of Mobile DL. The methods and tools men-
tioned above are confronted with the great heterogeneity found
in mobile devices, which stems from their different System-on-
Chips (SoCs) [6]. In other words, there is no “typical” smart-
phone or SoC and this makes it unusually difficult to apply
optimisations that generalise across diverse devices [12]. At
the same time, AI applications come with various performance
needs. These span from latency-critical apps, such as smart
cameras and Augmented Reality (AR) [13], to the throughput-
oriented demands of high-resolution video understanding [3]
and image enhancement [14]. Finally, DL models tend to have
vastly different computational costs. For instance, InceptionV3
requires an order of magnitude more FLOPs and memory than
EfficietNetLite0 (Table II). The situation is further aggravated
by the limited available resources of mobile devices compared

1https://tensorflow.org/lite
2https://pytorch.org/mobile/home/

to cloud/edge-based systems. All this makes it difficult to
develop end-to-end applications that provide interoperability
between devices while sustaining high performance.

III. OODIN
A. Overview

To bridge the gap between DL and mobile, OODIn is
proposed (Fig. 1). OODIn addresses the main challenges of
mobile DL (§II) at three levels. First, a novel DL application
model is introduced that captures DL applications by means
of a multi-objective optimisation framework (Section III-D).
This enables us to represent various use-cases along the most
important performance dimensions and analytically express
their relative importance for the use-case at hand. Second, to
tunably configure the accuracy-complexity trade-off of a given
DL model and adapt it to the target device capabilities, a novel
model selection method is employed which ensures that most
performance requirements will be met regardless of the device
(Section III-B1). Finally, to counteract system heterogeneity,
we introduce the Mobile Device Convergence Layer (MDCL)
(Section III-C2), a thin device-aware software wrapper that
ensures portability and scalability of DL applications across
mobile platforms. This is achieved by abstracting the resource
details of the underlying device and exposing critical system
parameters that can be optimised, either offline or at run time,
to extract the desired performance from the hardware. Overall,
the following design goals were taken into consideration.
Flexibility: Driven by the robust accuracy of DL models
across domains, OODIn should be able to optimise a wide
range of use-cases that arise through modern mobile apps. This
includes enabling various tasks, while satisfying the multiple
performance objectives of emerging applications.
Model Independence: Given the large variety of existing
DNNs, OODIn is required to support and provide optimised
execution of DL models with different architectures, number
of layers and overall computational and memory footprint.
Device Portability: Device independence entails the system
software and the underlying hardware. Given the fragmented
landscape of OS variants, OODIn needs to adapt apps such
that they sustain their functionality and performance. On the
hardware front, the existence of multiple vendors has led to
devices with significantly different resource characteristics,
including camera, screen, memory and processors. OODIn
needs to consider the device-specific resources and accordingly
customise the mapping of the target app.
Scalability: With the mobile devices’ capabilities varying
significantly, there is a need for tools that abstract the resource



details of a particular device and provide scalability. OODIn
should be able to sustain or improve performance in case of
an increase in the amount of available resources.
Adaptability: Given the intrinsic dynamicity of mobile apps
due to multi-tasking, which in turn affects the instantaneous
availability of resources, OODIn should tunably balance the
trade-off between performance and resource usage in order to
adapt to dynamic changes at run time.

B. Processing Flow

Fig. 1 depicts OODIn’s flow, consisting of two stages: the
offline and the online component. As a first step, the user
provides the performance objectives and optionally their own
custom DL model. The offline component starts by applying
a set of Transformations over the supplied model in order
to derive a number of compressed model variants. To assess
their characteristics, each variant is evaluated with respect
to its accuracy and resource demands. Accuracy Evaluation
is conducted using a user-supplied validation dataset for the
task at hand. On-device performance is measured through a
number of Device Measurements on a given mobile device for
each model. These measurements monitor latency, throughput
and memory usage and are repeated for varying system-level
parameters. Next, the accuracy and performance results are
passed to the System Optimisation module. At this stage,
OODIn traverses the design space defined by the different
model variants and system-level parameters, in order to yield
the highest performing configuration that satisfies the user’s
performance objectives. Finally, the offline component’s se-
lected configuration is loaded into the Application. At run time,
the Runtime Manager monitors the instantaneous resource
usage and adapts the app configuration to dynamic changes.

1) Offline Component: Internally, OODIn represents a
given model as a tuple m = 〈task, w, sm, sin, a, p〉, where
task is the DL task (e.g. object detection), w is the workload
in number of FLOPs, sm is the model size (i.e. number of
parameters), sin is the resolution of the input samples, a is the
accuracy and p is the numerical precision.

Model Space. The user-supplied DL model constitutes the
starting point for Model Selection (Fig. 1). The space of model
variants is defined based on Transformations employed by our
framework in order to modify the accuracy-complexity trade-
off of the model. Given a transformation set T , we generate
a new model variant by applying one transformation from T
on the original model mref as m t←−− mref for t ∈ T (1).

This formulation spans a model space which we denote
by M =

{
m | m t←−− mref, ∀t ∈ T

}
. Without hurting the

generality of our framework, the set T currently contains
various post-training quantisation schemes, including half-
precision floating-point (FP16), 8-bit fixed-point (INT8) and
the conventional full-precision floating-point (FP32), leading
to T ={FP32,FP16, INT8}. As such, T can be extended to in-
clude other techniques that trade off accuracy and complexity,
such as pruning [8] or dynamic channel skipping [15].

System Parametrisation. To enable fine-grain customi-
sation, OODIn introduces system-level parameters that can

be tuned to tailor the execution of the DNN to both the
performance needs and the underlying hardware. First, we
represent the available resources on the target platform as

R = 〈CE , Ncores, C,DVFS, b, vos, vcamera〉 (2)

where CE is the set of available compute engines, Ncores the
number of CPU cores, C the memory capacity, DVFS the set
of available Dynamic Voltage and Frequencey Scaling (DVFS)
governors, b the battery capacity, vos the version of the Android
OS and vcamera captures the camera characteristics, such as the
available APIs, the screen resolution and the flash capabilities.

Given this representation, we introduce the following
tunable system parameters: 1) the task-to-processor map-
ping, which selects which compute engine ce∈CE will per-
form the inference computations; 2) the number of threads
Nthreads∈{1, ..., Ncores} when using multithreading on the CPU;
3) the governor g ∈ DVFS which determines the DVFS
policy of the device; and 4) the recognition rate r, which
determines the invocation frequency of the inference engine,
e.g. when r = 1, inference is performed on each frame, while
when r = 0.5, every second frame. Overall, the configurable
system-level parameters of OODIn are hw=〈ce,Nthreads, g, r〉.

System Optimisation. OODIn’s strategy of selecting both
the most suitable model variant (Model Selection) and system
parameters (System Tuning) for each application is based
on the performance objectives, the generated DL models
and the device capabilities. The System Optimisation module
navigates the space of candidate designs across both the model
and system dimensions and yields the most suitable design
σ = 〈mref, t, hw〉. System Optimisation is discussed in detail
in Section III-D. In case the user has not supplied OODIn with
a custom reference model, our framework suggests the best fit
from the set of available models shown in Table II.

2) Online Component: The online component of OODIn
consists of the mobile Application and the Runtime Manager.
The selected design σ is used to configure the Application,
which can then be launched by the user. Upon deployment,
the Application continuously monitors the system resources
and sends periodic statistics about the state of the device, such
as the cores’ temperature or memory usage, to the Runtime
Manager. Based on this information, the Runtime Manager
decides whether to modify the system parameters hw or even
the model itself through a different transformation t, in order
to adapt to any significant changes in resource availability.

C. Mobile Software Architecture

Given the design considerations in §III-A, we adopt a multi-
layer software architecture for OODIn’s mobile Application
component. As depicted in Fig. 2, OODIn’s architecture con-
sists of two coarse layers: 1) the Service-Independent Layer
(SIL) and 2) the Convergence Layer (CL).

1) Service-Independent Layer: The primary objective of
SIL is to provide the app-level functionality while abstracting
the hardware resource details of the target device and the
characteristics of the DNN model. To this end, SIL is designed
to supply the core building blocks for constructing various



App User

…

…

…

Mobile Device

Sensor 
Input

Design

a b

cStatistics

SIL

DLACL

MDCL

CL

C
am

er
a

G
al

le
ry

C
la

ss
ifi

ca
ti

on

O
bj

ec
t

de
te

ct
io

n

Se
gm

en
ta

ti
on

Po
se

es
ti

m
at

io
n

Sa
m

su
ng

G
oo

gl
e

So
ny

H
ua

w
ei

X
ia

om
i

N
ok

ia

Fig. 2. OODIn’s multi-layered software architecture.

smart applications. As such, SIL offers a selection of widely
used modules, such as a camera interface for real-time visual
apps, a local database for storing processed data, e.g. the
OODIn-labelled photos of a user in a smart Gallery app, and
user interface (UI) components for interacting with the user.
SIL packages the aforementioned blocks under a unified API
to allow developers to combine them in a flexible, modular and
maintainable manner. After SIL completes the configuration
of the app and the UI, the Runtime Manager as well as the
inference engine for the DL model can be initialised.

2) Convergence Layer: In a complementary manner to the
model- and platform-agnostic SIL, CL considers the DNN
model and the system specifications of the given device,
and performs a number of adaptation steps. Thus, we organ-
ise CL into two sublayers: the Deep Learning Architecture
Convergence Layer (DLACL) which considers the given DNN
model; and the Mobile Device Convergence Layer (MDCL)
whose operation considers the target device. Both layers are
parametrised in order to provide the necessary fine-grain
customisability that will offer the flexibility to support the
diverse performance needs of DL applications.

DLACL. This layer provides the first DNN-aware interface,
capturing information about the DL architecture and its re-
source demands. DLACL is highly decoupled from both SIL
and MDCL as it is mainly responsible for receiving incoming
data samples from the input source (e.g. camera, storage or
microphone) and feeding them to the inference engine.

In addition, DLACL implements the online model selection,
whenever the Runtime Manager dictates that a different model
variant should be used (§III-B2). To alternate between the
available models, this layer needs the ability to dynamically
allocate sufficient memory for each model. To this end, we
isolate the set of buffers that are model-dependent, so that
they are managed only by DLACL. This includes buffers for
the input samples, the model itself and intermediate results.
The buffer sizes rely on the size of the inputs (sin), the
model size (sm) and the precision (p), i.e. the number of bits

used to represent the model’s trained parameters, respectively.
Hence, DLACL internally adopts the same tuple representation
as OODIn’s offline component (§III-B1) and stores sin, sm
and p for each model. As these values are known a priori
before deployment, this approach allows DLACL to statically
determine how much memory is needed for each buffer and,
thus, allocate only the necessary amount, without starving the
memory resources whenever a model swap is performed.

MDCL. Further closer to the hardware, the MDCL
layer is responsible for identifying the resources of the
target platform and allocating them to the task at hand
based on its needs. As such, MDCL populates the tar-
get platform resource model R (Eq. (2)). For instance,
the representation of Samsung S20 FE is constructed
as CES20FE={CPU,GPU,NPU}, Ncores=8, C=6 GB,
DVFS={energy_step, performance, schedutil}, b=4500 mAh,
vos=11 and vcamera={FULL, ..., 1080 × 2400}. The detected
parameters are also used when performing Device Measure-
ments (Fig. 1) in order to sweep over valid value ranges,
e.g. benchmark each model variant’s execution on all available
compute engines in CE or varying the threads up to Ncores.

MDCL is equipped with three independent middlewares
(Fig. 2). Middleware a provides SIL with the necessary
hardware information, which is vital for the configuration of
the application’s basic components, e.g. the camera interface
depends on the type of visual sensors and the UI on the screen
resolution. Middleware b is optionally used for optimising the
application’s features based on the output of DLACL. For
instance, an AI Camera app could optionally optimise the
parameters of the camera (e.g. the brightness) based on the
output of a scene recognition DNN for the previous frame.
Middleware c is responsible for collecting and transferring
various system statistics, such as GPU or memory usage to the
Runtime Manager. This middleware can also send warnings
regarding unexpected behaviour, such as CPU throttling.

D. System Optimisation

The developed framework aims to determine a model trans-
formation t together with the values of system parameters hw
that optimise the user-defined performance objectives. We de-
note a candidate configuration of OODIn as σ = 〈mref, t, hw〉.

To provide a flexible modelling framework for DL ap-
plications, we adopt a multi-objective optimisation (MOO)
formulation. Under this scheme, we cast each DL applica-
tion as a MOO problem based on the performance met-
rics of interest. The current set of performance metrics is
defined as P = {T, fps,mem, a} where T is the latency,
fps the throughput in frames-per-second, mem the memory
footprint and a the DNN accuracy. For each of the met-
rics, the user can define whether it should be maximised
or minimised, or whether the average, median or nth per-
centile should be as close as possible to a target value
val. Formally, we define the i-th user-specified objective as
oi=

〈
P,max/min/val(avg/median/nth)

〉
where metric P ∈ P

is optimised as specified by the second element of the tuple.
We present three representative use-cases in Eq. (3)-(5).



Use-case 1. MaxFPS: Optimise the application to achieve
the maximum throughput in frames-per-second (FPS) without
degrading a given level of accuracy.

max
σ

fps(σ) s.t. a1(σ)− a1,ref ≤ ε (3)

where fps(σ) and a1(σ) are the FPS and top-1 accuracy of
design σ respectively, a1,ref is the reference accuracy and ε
is the user-specified maximum accuracy drop tolerance. An
instance of such a use-case would be an AI Camera app
that has to perform real-time scene detection over the high-
resolution video captured by a smartphone, without catastroph-
ically penalising accuracy.

Use-case 2. TargetLatency: Optimise the application to
achieve maximum accuracy while meeting a target latency
constraint.

max
σ

a1(σ) s.t. T (σ) ≤ Ttarget (4)

where a1(σ) and T (σ) are the top-1 accuracy and latency
of design σ and Ttarget is the maximum tolerated latency
defined by the user. Such a scenario would be present when
segmenting a speaker’s video in order to apply AR features
during video-conferencing. In this case, low response time,
and thus latency, is critical in order to follow the movement
of the user, while accuracy has to be maximised to provide
meaningful outputs.

Use-case 3. MaxAccMaxFPS: Optimise the application to
achieve the maximum attainable accuracy and throughput.

max
σ

a1(σ)

a1,max
+ wfps ·

fps(σ)

fpsmax
(5)

where we set the accuracy weight to 1 and tune the FPS weight
wfps to capture the relative importance between accuracy and
throughput. As such, for equal importance, wfps can be set to
1. Furthermore, the accuracy and FPS of each design σ are
divided by the maximum observed accuracy and FPS in the
model space, to yield a non-dimensional objective function.

For the use-cases in Eq. (3) and (4), we reduce the MOO
problems to a single objective by means of an ε-constraint
formulation [16]. In the use-case of Eq. (5), we adopt the
weighted sum method [16] and allow the user to specify
an importance weight (wfps) between the two metrics to be
maximised. Overall, the flexibility of OODIn’s application
model enables the expression of a wide spectrum of use-cases
that capture the exact needs of a given DL application.

Offline Optimisation. With accuracy being only a function
of the reference model mref and the applied transformation
t, a(σ) can be calculated offline on a user-supplied valida-
tion dataset for all values of t ∈ T . On the other hand,
with latency, throughput and memory depending on both the
target device and the values of OODIn’s system parameters
(hw), evaluating T (·), fps(·) and mem(·) is device-dependent
and thus requires running each possible system configuration
〈ce,Nthreads, g, r〉 on the target device. The required values are
obtained through the on-device runs performed by the De-
vice Measurements module (Fig. 1), which collects statistics,
including min, max, average, median and nth percentile of la-
tency and throughput, together with peak memory usage. Next,

TABLE I
TARGET PLATFORMS

Device Sony Xperia C5 Ultra Samsung A71 Samsung S20 FE

Year 2015, August 2020, January 2020, October
Chipset MediaTek MT6752 Snapdragon 730 Exynos 990
CPU 8× 1.69 GHz

ARM Cortex-A53
2× 2.2 GHz
Kryo 470 Gold
6× 1.8 GHz
Kryo 470 Silver

2× 2.73 GHz
Exynos M5
2× 2.5 GHz
ARM Cortex-A76
4× 2.0 GHz
ARM Cortex-A55

GPU Mali-T760 MP2 Adreno 618 Mali-G77 MP11
NPU 7 3 3
RAM 2 GB @ 800 MHz 6 GB @ 1866 MHz 6 GB @ 2750 MHz
Android 6.0 (API level 23) 10 (API level 29) 11 (API level 30)
Camera API LEGACY LEVEL_3 FULL
Battery 2930 mAh 4500 mAh 4500 mAh

both the accuracy and device measurements are stored and
organised in look-up tables. As a final step, OODIn considers
the user-specified MOO problem and performs a complete
enumerative search over the populated look-up tables, in order
to yield the design σ that optimises the given use-case.

Run-time Adaptation. To sustain performance in spite
of fluctuation in on-device resource availability, the Runtime
Manager applies an adaptation mechanism at run time. This
involves re-tuning the configuration of the Application, by
selecting an alternative design that optimises the defined multi-
objective function under the new conditions. To perform this
step, the Runtime Manager only stores the device-specific
look-up tables. At deployment time, the Application regularly
transmits system statistics, such as processor load, to the
Runtime Manager. In the event of a significant resource
availability change (e.g. 10% difference in the GPU load), the
Runtime Manager is invoked as a separate thread, it searches
the look-up tables for the new highest performing design and
provides the Application with the resulting configuration.

E. Implementation

We implement OODIn’s offline component using
TensorFlow (v2.4.0). TensorFlow is used for building
the Transformations module (Fig. 1) and for evaluating the
accuracy of the generated model variants. Specifically, we
utilise TFLite’s post-training quantisation mode. For the FP16
models, we use float16 quantisation, while for the INT8
models we use TFLite’s dynamic range quantisation mode.

OODIn’s mobile Application and Runtime Manager were
developed in Java (v8). For optimised on-device inference,
we utilise TFLite’s interpreter, supporting CPU, GPU and
NNAPI backends. To support a wide range of computer vision
applications, we integrate into OODIn’s SIL layer Android’s
Camera2 API, which gives full control over the device’s
camera sensors, and the Room library, which provides a local
Gallery database for storing each user’s labelled photos.

IV. EVALUATION

A. Experimental Setup
We target three smartphones with different resource

characteristics (Table I): the low-end Sony Xperia C5 Ultra, the
mid-tier Samsung A71 and the high-end Samsung S20 FE. The
evaluated devices also differ in terms of camera capabilities
and Android API levels. Each experiment is run 200 times,
with 15 warm-up runs, to obtain the average latency.



C5 A71 S20 C5 A71 S20 C5 A71 S20 A71 S20 C5 A71 S20 A71 S200.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Av

er
ag

e 
sp

ee
du

p 
(×

)

MobileNetV2 1.0
INT8

EfficientNetLite0
INT8

InceptionV3
INT8

ResNetV2 101
FP16

EfficientNetLite4
INT8

DeepLabV3
FP32

oSQ-CPU
oSQ-GPU
oSQ-NNAPI
OODIn

Fig. 3. Comparison with optimised status-quo (oSQ-CPU, -GPU, -NNAPI)
designs across devices and models. oSQ-CPU is used as the speedup baseline.

TABLE II
EVALUATED DEEP NEURAL NETWORKS

DNN Precision* Resolution Top-1/mIoU Params Size FLOPs

MobileNetV2 1.0 INT8 224×224 70.8% 3.47 M 3.41 MB 0.6 G
MobileNetV2 1.0 FP32 224×224 71.8% 3.47 M 13.3 MB 0.6 G
EfficientNetLite0 INT8 224×224 74.4% 4.7 M 5.17 MB 0.8 G
MobileNetV2 1.4 FP32 224×224 75.0% 6.06 M 23.2 MB 1.1 G
EfficientNetLite0 FP32 224×224 75.1% 4.7 M 17.7 MB 0.8 G
ResNetV2 101 FP32 299×299 76.8% 44.5 M 170 MB 15.6 G
InceptionV3 INT8 299×299 77.5% 23.9 M 22.8 MB 11.4 G
InceptionV3 FP32 299×299 77.9% 23.9 M 90.9 MB 11.4 G
EfficientNetLite4 INT8 300×300 80.2% 13.0 M 14.3 MB 5.2 G
EfficientNetLite4 FP32 300×300 81.5% 13.0 M 49.4 MB 5.2 G
DeepLabV3 FP32 513×513 71.8% 5.75 M 2.65 MB 5.7 G

*We omit FP16 precision from the table as it yielded accuracy within 1% of FP32’s.

DNN Models. To show the generalisability of OODIn
across models, we select five representative DNNs (Table II)
of varying depth, architecture and computational footprint:
1) MobileNetV2, 2) ResNetV2 101, 3) InceptionV3, 4) Ef-
ficientNet and 5) DeepLabV3. MobileNetV2 [17] is a hand-
crafted model for resource-constrained devices. We target two
variants of increasing size (1.0 and 1.4). ResNetV2 101 [1]
and InceptionV3 [18] are mainstream models that achieve
high accuracy at the expense of significant resource demands.
EfficientNet [19] is a state-of-the-art automatically generated
DNN for mobile devices. We target two variants of increasing
size (Lite0 and Lite4). Finally, DeepLabV3 [3] is a state-of-
the-art semantic segmentation model, used for image under-
standing applications. We use the mobile-friendly DeepLabV3
variant with a MobileNetV2 backbone pretrained on ImageNet
and a depth multiplier of 0.5.

Tasks and Datasets. To demonstrate the applicability of
OODIn across tasks, we target two tasks: 1000-class image
classification and 21-class semantic segmentation. The image
classification models were trained on ImageNet ILSVRC 2012
and we report accuracy on the 50k-images validation set. The
DeepLabV3 segmentation model was first pretrained on the
MS COCO dataset and then trained on PASCAL VOC 2012.
We report the VOC test accuracy in terms of pixel intersectio-
over-union (IoU) averaged across the 21 classes [3].

Baselines. To assess OODIn’s performance against the
state-of-the-art (SOTA), we compare with the following base-
lines: i) optimised status-quo (oSQ-D), ii) platform-aware
(PAW-D) and iii) model-aware (MAW-D) designs.

oSQ-D consists of conventional but optimised execution
on a single compute engine. As such, we report results
using CPU-, GPU- or NNAPI-only. For each compute engine,
we tune the associated parameters to obtain an optimised
implementation. In particular, for oSQ-CPU, we enable the
use of the XNNPACK library and tune the number of threads

Mob
ile

NetV
2 1

.0 
INT8

Mob
ile

NetV
2 1

.0 
FP

16
Mob

ile
NetV

2 1
.0 

FP
32

Mob
ile

NetV
2 1

.4 
FP

16
Mob

ile
NetV

2 1
.4 

FP
32

Eff
icie

ntN
etL

ite
0 I

NT8
Eff

icie
ntN

etL
ite

0 F
P1

6
Eff

icie
ntN

etL
ite

0 F
P3

2
Inc

ep
tio

nV
3 I

NT8
Eff

icie
ntN

etL
ite

4 I
NT8

0

100

200

300

400

500

600

700

800

900

90
th

 p
er

ce
nt

ile
 in

fe
re

nc
e 

la
te

nc
y 

(m
s) PAW-D

MAW-D
OODIn

Fig. 4. Comparison with PAW-D and MAW-D designs on low-end Sony
Xperia C5 Ultra across various models. A subset of models are not depicted.
These are DNNs that caused either thermal issues due to rapid overheating,
or significant lag (≥ 5 s) of the AI Camera app, which would be catastrophic
for the user experience and hence are not deployable on the particular device.

Mob
ile

NetV
2 1

.0 
INT8

Mob
ile

NetV
2 1

.0 
FP

16

Mob
ile

NetV
2 1

.0 
FP

32

Mob
ile

NetV
2 1

.4 
FP

16

Mob
ile

NetV
2 1

.4 
FP

32

Eff
icie

ntN
etL

ite
0 I

NT8

Eff
icie

ntN
etL

ite
0 F

P1
6

Eff
icie

ntN
etL

ite
0 F

P3
2

Inc
ep

tio
nV

3 I
NT8

Inc
ep

tio
nV

3 F
P1

6
Inc

ep
tio

nV
3 F

P3
2

Re
sN

etV
2 1

01
 FP

16

Re
sN

etV
2 1

01
 FP

32

Eff
icie

ntN
etL

ite
4 I

NT8

Eff
icie

ntN
etL

ite
4 F

P1
6

Eff
icie

ntN
etL

ite
4 F

P3
2

Dee
pL

ab
V3

 FP
32

0

50

100

150

200

250

300

350

400

90
th

 p
er

ce
nt

ile
 in

fe
re

nc
e 

la
te

nc
y 

(m
s) PAW-D

MAW-D
OODIn

Fig. 5. Comparison with PAW-D and MAW-D designs on mid-tier Samsung
A71 across various models.

Mob
ile

NetV
2 1

.0 
INT8

Mob
ile

NetV
2 1

.0 
FP

16

Mob
ile

NetV
2 1

.0 
FP

32

Mob
ile

NetV
2 1

.4 
FP

16

Mob
ile

NetV
2 1

.4 
FP

32

Eff
icie

ntN
etL

ite
0 I

NT8

Eff
icie

ntN
etL

ite
0 F

P1
6

Eff
icie

ntN
etL

ite
0 F

P3
2

Inc
ep

tio
nV

3 I
NT8

Inc
ep

tio
nV

3 F
P1

6
Inc

ep
tio

nV
3 F

P3
2

Re
sN

etV
2 1

01
 FP

16

Re
sN

etV
2 1

01
 FP

32

Eff
icie

ntN
etL

ite
4 I

NT8

Eff
icie

ntN
etL

ite
4 F

P1
6

Eff
icie

ntN
etL

ite
4 F

P3
2

Dee
pL

ab
V3

 FP
32

0
50

100
150
200
250
300
350
400
450
500

90
th

 p
er

ce
nt

ile
 in

fe
re

nc
e 

la
te

nc
y 

(m
s) PAW-D

OODIn

Fig. 6. Comparison with PAW-D designs on high-end Samsung S20 FE across
various models. We omit MAW-D designs as these have been optimised for
S20 and hence coincide with OODIn’s designs.

between 1 and the device’s Ncores. oSQ-CPU is equivalent to
the SOTA CPU-based design in [9]. For oSQ-GPU, we use the
fastest between FP16 and INT8. oSQ-GPU is equivalent to a
set of SOTA GPU-based designs [20]–[22]. For oSQ-NNAPI,
we use the default accelerator specified by the device vendor.

PAW-D comprises a model-unaware configuration that has
been optimised for the target device. To this end, we use Ef-
ficientNetLite43 for configuration optimisation on each device
and use the same configuration across models for execution
on the same device. MAW-D is a model-aware configuration,
but platform-agnostic. As such, we use the target model for
each experiment and optimise its configuration using a single
device. We use S20 for this step, emulating the industry
common practice of optimising for flagship devices. The
resulting configuration is used across devices.

3We select EfficientNetLite4 as it lies in the middle in terms of computa-
tional and memory demands among the evaluated DNNs (Table II).



B. Evaluation of OODIn’s Performance
Comparison with oSQ-D. This section presents a compar-

ison of our framework with optimised status-quo baselines.
This is investigated by setting the objective of OODIn to
minimising the average latency with no accuracy drop allowed,
and comparing the performance of the resulting configuration
across devices and models. Fig. 3 shows the performance ben-
efits achieved by OODIn. Our framework delivers a speedup of
up to 4.14× (1.73× geometric mean across the models), 4.29×
(1.74× geo. mean) and 93.46× (5.9× geo. mean) over oSQ-
CPU, oSQ-GPU and oSQ-NNAPI, respectively. Morevover,
OODIn provides 3.3× higher speedup over oSQ-NNAPI, com-
pared to oSQ-CPU and -GPU. This indicates that, despite its
potential, NNAPI remains in its infancy and naively resorting
to NNAPI designs often leads to suboptimal execution.

We further observe that the highest performing engine
changes as a function of both model and device. This phe-
nomenon is rooted in the wide disparity between DNN work-
loads, but also highlights the vast system heterogeneity across
devices that directly affects performance. Hence, the different
oSQ-D designs become suboptimal as we move to a different
DNN-device pair. On the other hand, OODIn counteracts the
effect of both DNN diversity and system heterogeneity and
sustains high performance, by using its model- and system-
level parameters to tailor the execution to the traits of both
model and device. Overall, the results demonstrate the per-
formance benefits provided by OODIn over CPU, GPU and
NNAPI, as well as its scalability across diverse mobile devices.

Comparison with PAW-D and MAW-D. Here, we evaluate
OODIn with highly optimised platform- and model-aware
designs. For these experiments, OODIn’s offline objectives
were set to minimise the 90th percentile inference latency
subject to no accuracy drop with respect to the given DNN.

Fig. 4-6 show the achieved performance across models for
the low-, mid- and high-end devices, respectively. Compared
to PAW-D and MAW-D on Sony C5, we observe a speedup
of up to 2.36× (1.49× geometric mean across the models)
and 1.56× (1.30× geo. mean), respectively. On Samsung
A71, OODIn yields performance improvements of up to
4.3× (1.25× geo. mean) over PAW-D and 3.5× (1.67× geo.
mean) over MAW-D. Finally, on Samsung S20, our framework
outperforms PAW-D by up to 3.44× (1.7× geo. mean).

The performance gains come mainly from the fact that the
proposed framework tailors the execution to both the model
and platform characteristics. PAW-D has to rely on the traits
of a proxy DNN to determine the execution configuration. The
suboptimality of this approach can be observed by examining
the mapping of InceptionV3 on A71. In this case, PAW-D
selects a GPU design, as this engine yielded the highest per-
formance for the proxy DNN (EfficientNetLite4). On the other
hand, OODIn deploys the model on A71’s NNAPI, which
is the actual best configuration (Fig. 3), delivering 1.87×
lower latency. Similarly, although MAW-D considers the actual
DNN, it optimises based on the behaviour of S20 and hence
does not capture the hardware peculiarities of the actual target
device. The drawback of this is manifested for MobileNetV2

Fig. 7. Runtime Manager’s behaviour under device load, when targeting
MobileNetV2 1.4 on A71.

0 25 50 75 100 125 150 175 200
Runs

120

140

160

180

200

220

90
th

 p
er

ce
nt

ile
 in

fe
re

nc
e 

la
te

nc
y 

(m
s) NNAPI

GPU
CPU
throttling

Fig. 8. Runtime Manager’s behaviour under thermal throttling, targeting
InceptionV3 on A71.

1.0 INT8. On S20, the CPU is often the highest performing
engine (Fig. 3). As such, MAW-D opts in to use a CPU-based
design for MobileNetV2 1.0 INT8 on A71. OODIn, instead,
selects an NNAPI-based design, achieving 3.5× speedup over
MAW-D. As such, our framework overcomes the limitations of
both baselines by tailoring execution to the target DNN-device
pair and thus better utilising the available device resources.
C. Run-time Adaptation

To assess the responsiveness of OODIn’s Runtime Man-
ager in adapting to dynamic changes, we targeted A71 and
investigated OODIn’s performance under two characteristic
scenarios: i) device load and ii) processor thermal throttling.

Device Load. To evaluate OODIn’s performance under
various device loads, we measured the inference latency of our
framework when varying the load of the target device using
MobileNetV2 1.4. This is accomplished by exponentially
scaling the inference latency by a load factor (i.e. a factor
of 2 corresponds to 2× slower execution). Fig. 7 depicts the
achieved 90th percentile latency under various device loads.

With all engines idle (start of x-axis), OODIn selects the
highest performing design for the particular device-DNN pair,
which runs on the GPU. As the GPU load increases (towards
the right-hand side) due to sharing between multiple tasks,
performance degrades, resulting in excessive latency at the
first vertical line. At that point, OODIn’s Runtime Manager
performs a compute engine change and switches to an NNAPI-
based configuration. In this manner, it is able to sustain higher
performance despite the GPU overload. Further towards the
right, as the NNAPI-targeted engine also becomes loaded, the
Runtime Manager switches to a CPU-based design, alleviating
the severe impact of processor contention on latency. As
a result, by periodically monitoring resource usage and re-
evaluating the current configuration, OODIn’s Runtime Man-
ager is able to adapt the execution based on the device load,
leading to latency reductions of up to 2.7× (1.55× geometric
mean across future runs) over the statically selected design.



Thermal Throttling. To assess the adaptability of OODIn
with respect to thermal throttling events, we conducted a
throughput-driven experiment: here, OODIn uses InceptionV3
to process a continuous stream of images from the camera,
leading to processor overheating and subsequent reduction of
its performance through DVFS. Fig. 8 shows the achieved
inference latency as a function of inference runs.

Initially, OODIn selects the highest performing configura-
tion for the target device-DNN pair, which is NNAPI-based.
After the 85th processed image, the NNAPI’s performance
rapidly deteriorates due to frequency reduction as dictated by
the DVFS governor. Our Runtime Manager detects the throt-
tling event within approximately 800 ms and switches to the
next highest performing design that maps on a different engine,
i.e. a GPU-based design for the particular device-DNN pair.
After several inferences, GPU throttling is launched. OODIn’s
Runtime Manager detects it within approximately 1150 ms and
switches to a CPU-based configuration. Overall, by identifying
throttling behaviour in a timely manner, OODIn’s run-time
adaptation mechanism effectively decides when to impose a
new configuration and which compute engine to migrate to,
providing the best performance possible at any given time
instant independently of the system dynamicity.

V. RELATED WORK

Resource Characterisation for Mobile DL. [23] pre-
sented an initial study of the resource demands of mobile
DL, investigating the energy consumption and processor and
memory usage of DL applications, and how well these can
be accommodated by mobile platforms. Focusing on the wide
diversity of existing devices, recent works have highlighted the
impact of system heterogeneity when deploying DNNs [12]
and the significant performance variation between different
platforms [6], [24]. Moreover, [11] presents an empirical study
on how real Android apps employ DL, showing that although
81% of apps use DNNs, only 6% of them apply optimisations.

Mobile Backend Optimisations. With mobile chipsets
increasingly hosting heterogeneous processors such as GPUs,
DSPs and NPUs, prior work has investigated the opti-
mised execution of DNNs in such settings. Focusing on
single-processor execution, several frameworks [20]–[22] have
mapped the execution of DNNs on the GPU, while Deep-
Ear [25] also targets the DSP. Exploiting all available engines,
another stream of work [26], [27] has explored parallelising
DNN inference across the heterogeneous engines.

Adaptive Inference Systems. Aiming at adaptability to
dynamic environments, [5] and [28] introduced cloud-device
collaboration by executing earlier layers locally and the rest on
the cloud. [29] employs multiple models and dynamically de-
cides which one and whether to execute it on device or cloud.
Recently, more specialised systems [10], [30]–[32] have been
proposed, which exploit the different complexity of inputs to
early-exit, resulting in faster processing and energy savings for
simpler samples. Despite the high efficiency of these systems,
their integration into mobile apps, as well as the generalisation
of their use across heterogeneous devices, different DL models
and applications remains an open problem.

VI. CONCLUSION

This paper presents OODIn, a framework that mitigates
the challenges of deploying high-performance DNNs across
heterogeneous mobile devices. By combining a novel mo-
bile software architecture parametrised at both the model-
and system-level, together with a multi-objective modelling
framework for DL applications, OODIn customises the exe-
cution to the target DNN, application needs and target device,
outperforming both status-quo and platform- and model-aware
designs across various smartphones. Moreover, through an
efficient run-time adaptation mechanism, OODIn dynamically
reconfigures the execution to adapt to the inherent resource
availability fluctuations of mobile devices, opening the way
for robust and scalable on-device DL inference.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in CVPR, 2016.

[2] A. Toisoul et al., “Estimation of continuous valence and arousal levels
from faces in naturalistic conditions,” Nature Machine Intelligence, 2021.

[3] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking Atrous
Convolution for Semantic Image Segmentation,” arXiv, 2017.

[4] R. Vipperla et al., “Learning to Listen... On-Device: Present and Future
Perspectives of On-Device ASR,” GetMobile, vol. 23, no. 4, p. 5–9, 2020.

[5] Y. Kang et al., “Neurosurgeon: Collaborative Intelligence Between the
Cloud and Mobile Edge,” in ASPLOS, 2017.

[6] A. Ignatov et al., “AI Benchmark: All About Deep Learning on Smart-
phones in 2019,” in ICCVW, 2019.

[7] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient Processing of Deep
Neural Networks: A Tutorial and Survey,” Proc. of IEEE, 2017.

[8] T.-J. Yang et al., “NetAdapt: Platform-Aware Neural Network Adaptation
for Mobile Applications,” in ECCV, 2018.

[9] B. Jacob et al., “Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference,” in CVPR, 2018.

[10] S. Laskaridis, S. I. Venieris, H. Kim, and N. D. Lane, “HAPI: Hardware-
Aware Progressive Inference,” in ICCAD, 2020.

[11] M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu, “A First Look at Deep
Learning Apps on Smartphones,” in WWW, 2019.

[12] C. Wu et al., “Machine Learning at Facebook: Understanding Inference at
the Edge,” in HPCA, 2019.

[13] L. Liu, H. Li, and M. Gruteser, “Edge Assisted Real-time Object Detection
for Mobile Augmented Reality,” in MobiCom, 2019.

[14] R. Lee, S. I. Venieris, and N. D. Lane, “Deep Neural Network-based
Enhancement for Image and Video Streaming Systems: A Survey and
Future Directions,” ACM Computing Surveys (CSUR), 2021.

[15] B. Fang et al., “NestDNN: Resource-Aware Multi-Tenant On-Device Deep
Learning for Continuous Mobile Vision,” in MobiCom, 2018.

[16] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization
methods for engineering,” Struct. and multidisc. optimization, 2004.

[17] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bileNetV2: Inverted Residuals and Linear Bottlenecks,” in CVPR, 2018.

[18] C. Szegedy et al., “Inception-v4, Inception-ResNet and the Impact of
Residual Connections on Learning,” in AAAI, 2017.

[19] M. Tan and Q. Le, “EfficientNet: Rethinking Model Scaling for Convolu-
tional Neural Networks,” in ICML, 2019.

[20] L. Oskouei et al., “CNNdroid: Gpu-accelerated execution of trained deep
convolutional neural networks on android,” in MM, 2016.

[21] L. N. Huynh et al., “DeepMon: Mobile GPU-based Deep Learning Frame-
work for Continuous Vision Applications,” in MobiSys, 2017.

[22] J. Yi and Y. Lee, “Heimdall: Mobile GPU Coordination Platform for
Augmented Reality Applications,” in MobiCom, 2020.

[23] N. D. Lane et al., “An early resource characterization of deep learning on
wearables, smartphones and internet-of-things devices,” in IoT-App, 2015.

[24] M. Almeida et al., “EmBench: Quantifying performance variations of deep
neural networks across modern commodity devices,” in EMDL, 2019.

[25] N. D. Lane et al., “DeepEar: Robust smartphone audio sensing in uncon-
strained acoustic environments using deep learning,” in UbiComp, 2015.

[26] Y. Kim et al., “µLayer: Low latency on-device inference using cooperative
single-layer acceleration and processor-friendly quantization,” in EuroSys,
2019.

[27] R. Lee, S. I. Venieris, L. Dudziak, S. Bhattacharya, and N. D. Lane,
“MobiSR: Efficient On-Device Super-Resolution through Heterogeneous
Mobile Processors,” in MobiCom, 2019.



[28] M. Almeida, S. Laskaridis, S. I. Venieris, I. Leontiadis, and N. D. Lane,
“DynO: Dynamic Onloading of Deep Neural Networks from Cloud to
Device,” in arXiv, 2021.

[29] S. Han et al., “MCDNN: An approximation-based execution framework
for deep stream processing under resource constraints,” in MobiSys, 2016.

[30] S. Laskaridis et al., “SPINN: Synergistic Progressive Inference of Neural
Networks over Device and Cloud,” in MobiCom, 2020.

[31] J. Huang et al., “CLIO: Enabling Automatic Compilation of Deep Learn-
ing Pipelines across IoT and Cloud,” in MobiCom, 2020.

[32] A. Kouris, S. I. Venieris, S. Laskaridis, and N. D. Lane, “Multi-Exit
Semantic Segmentation Networks,” in arXiv, 2021.


